The Perimeter Of A Rectangular Ranch Is 400 M. Find The Dimensions Of The Ranch That Will Contain The Greatest Area.
(2L + 2W = 400) 1/2
L + W = 200
L = 200 - W
A= LW
A = (200-W)W
A= -W^2 + 200W <- quadratic equation (Y= ax^2+bx+c)
Find vertex = (h,k) where h = -b/2A
-(200)/2(-1) = -200/-2 = 100
[i]h is width[/i]
[i]
K is Y (area)[/i]. Kaya plug 100 in nalang sa W
K = -(100)^2 + (200)(100)
K= -10000 + 20000
K = 10000
k is m. area
W = 100
A = 10000
A= (L)(W)
10000 = 100L
L = 100
--
correct: substitute variables to the answers in this equation 2L + 2W = 400
2(100) + 2(100) = 400
200 + 200 = 400
Whew. Tama ba. Haha
p.s. daan pala
Last edited by xxBUBBLiExx (2010-09-06 10:53:18)